
It should be notedthat it is particularly important to satisfy inequality (5) in s o l v -  
ing n o n l i n e a r  problems.  Thus, t he  s o l u t i o n  of  a n o n l i n e a r  h e a t - c o n d u c t i o n  problem showed 
that the iterations do not converge if inequality (5) is not satisfied, where a, b, and c 
are taken as the extreme values of the corresponding coefficients of the equation. 
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THE STRESS-DIFFUSION EFFECT IN HETEROGENEOUS LIQUID STREAMS 

O. A. Grechannyi UDC 532.529.5 

An analysis is made of the effect of the shear stresses in the average stream 
on the coefficient of molar diffusion of a passive impurity in a turbulent 
liquid stream. 

In a study of the slow motion of a specularly reflecting sphere in a heterogeneous 
stream of rarefied gas a dependence of the coefficient of dynamic friction on the tensor of 
shear stress in the stream (the stress-phoretic effect) was obtained in [i]. In this case 
the transfer processes are determined by the following tensor expression for the coefficient 
of Brownian diffusion: 

DiJ = DO (SiJ - -  ~oi/P),  (1) 

where D ~ is the Einstein coefficient of Brownian diffusion; ~ij are the coefficients of the 
reduced stress tensor; p is the hydrostatic pressure; 6ij is the Kronecker symbol; a is a 
numerical coefficient. Analogous results follow within the framework of the kinetic theory 
in an analysis of the motion of heavy impurity particles in a nonequilibrium gas [2]. 

In the present report it is shown that a similar dependence of the diffusion coefficient 
on the stress tensor in a stream also occurs in the case of the turbulent diffusion of a pas- 
sive impurity in a shear stream (the stress-diffusion effect). 

Let v(t, x; ~) be the random vector field of the velocity of a turbulent stream of in- 
compressible liquid; O(t, x; m) be the scalar field of the concentration of a passive impurity 
in it, which satisfies the transfer equation [3] 

0 0 
-- ~ (l, x; o) -- v i (t, x; o) @ (t, x; o). (2) 
Ot Ox i 

Let us examine the derivation of the equation of convective diffusion for ~ on the as- 
sumption of the statistical independence of the initial distribution ~(0, x; m) = @0(x; ~) 
from the velocity fluctuations in the in the turbulent stream and in the approximation of a 
Gaussian velocity field. We take v i = vi + v' and vi' = 0 and introduce the designation 

f~ (t; o) = - -  U-~ (t)-~x~ V; (t' x; (o) U (t)' U (t) = exp [ - -  t O-~- vf (x) ] (3) 
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with allowance for which we write the formal solution of (2) in the form 

t 

o (t, =;,o) = u (t)exp [.f dt,n (t,; ,o)]Oo (x; ,o). 
0 

(4) 

We average this expression over the ensemble of fluctuations v i' of the velocity field and 
the initial distribution O0 of the impurity, allowing for their statistical independence, and 
using the definition of the semiinvariants of the correlation functions of the random opera- 

tor f i ( t ;  ~) : 

t 

70 (t, x) = V (t) < exp .!' dt,n (t d (o) ] )  ~o (x) 
0 

t t t 

.... U (Oexpl.l'ddlj'dtp+ < ~(q; o)a(G+;oO > ]7~o(X ) . 
0 0 

(5) 

The closed equation of turbulent diffusion follows from (5)  when the time derivative is cal- 
culated with allowance for Eqs. (3) and the condition of incompressibility of the stream 

0_~_~ _ F 7 ~ _ _ ~  O ~- , (6) 
Ot Ox, Oxi 

where the diffusional flux ]i has the form 

0 
f ,  ( t , , o  = - .!" dt,< v; (t, x) U (t - -  t,) v; (t,, x) > Oxj 

0 

We transform the right side of this expression as follows: 

u - , ( t -  t,fo (t, x). 

7,(t,x)=-S a, Sdy,< v~(t,,u)v)(t,x) > U ( t - - t , ) 8 ( x - - v )  U-'(t - q ) ~ ( t , x )  
0 

(7) 

and allow for the relation 

O__U-t( t_tO ~ = U-~(t _ q )  ~ + ( t - -  . 
Oxj 

We note that 

u (t - -  q) 8 (y - -  x) u -~ ( t - -  q) = 6 I v - -  x* (t. q)],  

(8) 

(9) 

where xi*(t, tx) = U(t-- tx)xiU-X(t - tx). The function xi*(t, t~) satisfies the condition 

xi*(tx, tx) = xi and the equation 

dt 
= U (t--tO v+ (x) U - t ( t - -  q) = v+ ix* (t, t31, 

which follows directly from the definition of xi*(t, t~) and Eq. (3). Consequently, x*(t, tx) 
represents the trajectory of the motion of a passive particle with the averaged stream ve- 
locity ~(x) from the point x at the time t~. Substituting (8) and (9) into (7), after inte- 

grating over y we obtain 

a~ (t, x) _{_ ( t - t t )  ~ k  (x) a7~ (t, x) ] (lO) 
axj Ox i axh .1 -f, tt, x) = - . i  dq < v~ (t,x) v~ v,,.,~* (t, t~] > .~ 

0 

or, designating 

t 

f~h (t, x) = .I dq  < ~,~ (t, ~) ,,) it,, x* (t, tO] >, 
Q 

(Ii) 
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t 

V* (t, x) = S dta (t - -  6) < v; (t, x) v) [t~, x* (t, t~)] > 
0 

(12) 

allowing only for the symmetrical part of the tensor ~k/~Xj in (i0), and introducing the 
shear-stress tensor Okj = --2Ht{~Vk/~Xj} s, we obtain 

~ ( t , x ) - - -  *(t ,x)  d~ 1 �9 t 06 
-- ~ i  ~Xj + --&t ?i~ ( '  x) anj ---OXj " (13) 

The second term in (13) explicitly allows for the effect of the influence of the shear 
stresses in the averaged stream on the diffusion of the passive impurity. Since the cor- 
relations of the field v'(t, x; m) are important over intervals t -- t, not exceeding the 
time Zv of correlation of pulsations in the turbulent stream and over distances x -- x*(t, t,) 
not exceeding the radius R of the spatial correlations, in the case of ~T v << R (~ is the 
characteristic velocity of the averaged stream) one can replace x*(t, t,) by x*(t, t) = x 
in Eqs. (ii) and (12). Equation (13) can be considered as the basis for the construction of 
semiphenomenological theories of turbulent diffusion. 

Let us further consider the process of diffusion in time scales larger than Tv, neglect- 
ing the time dependence of 8ij and Yij (using their values at t = ~). Since the time cor- 
relations of the velocity pulsations die out faster than i/(t -- t:), the assumption that 
Yij(t, x) is finite as t § ~ is obvious. Such asymptotic behavior corresponds to a Markov 
approximation of particle motion in coordinate space but differs from the usual approximation 
[3] corresponding to the approximation of a field v'(t, x; m) which is ~-correlated in time. 
We assume that 8ij( =, x) = Tijv '2 = D~j is the coefficient of molar diffusion, Tij is the 
correlation time of the velocity pulsations, and T v = max Tij) and in the spirit of the 
phenomenological theory we represent Yji( =, x) in the form 

Vi: (oo, X) : ~ TizD~, (14) 

where ~ is a numerical coefficient. With allowance for (14) we represent (13) in the form 

(t, x) = - -  Dij a6 _ D t 6h7-- ~ TiI~6M (15) 
axj if ~t axj 

Thus,  t h e  e x p r e s s i o n  (15) f o r  t h e  c o e f f i c i e n t  Di j  i n  t h e  e q u a t i o n  (6) o f  c o n v e c t i v e  d i f -  
f u s i o n  in a heterogeneous turbulent stream is formally analogous to the coefficient of 
Brownian diffusion (i). However, if we extend the analogy between the physical situation be- 
ing considered here and Brownian diffusion on the basis of Eq. (2), where v(t, x; ~) is the 
velocity of a Brownian particle in a heterogeneous medium, then in the case of a dependence 
of the coefficient of dynamic friction of a Brownian particle on the stress tensor [2] one 
should use Eq. (i) in calculating the coefficient 8ij(t , x). It therefore reflects the de- 
pendence of the correlation function of the velocity of a Brownian particle on the stress 
tensor in the stream. The dependence of the coefficient of molar diffusion D~. on the 
stress tensor of an averaged stream is an analog of the stress-phoretic effect3in turbulent 
diffusion. In the case of Brownian motion (the velocity fluctuations are the result of 
thermal fluctuations of the medium), the second term in (13) is negligibly small in comparison 
with the first. It can prove to be important, however, in the case of macroscopic fluctua- 
tions in a turbulent stream. Here Eq. (15) reflects the effect of the interaction between 
the molar "mixing" of the passive impurity and its motion in a heterogeneous averaged stream. 
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